Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 9(1): 8, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326393

RESUMO

Whole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of variants in the coding and non-coding DNA regions and helps elucidate the genetic underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole exome sequencing (WES). Here we propose a cost-effective method which we call "Whole Exome Genome Sequencing" (WEGS), that combines low-depth WGS and high-depth WES with up to 8 samples pooled and sequenced simultaneously (multiplexed). We experimentally assess the performance of WEGS with four different depth of coverage and sample multiplexing configurations. We show that the optimal WEGS configurations are 1.7-2.0 times cheaper than standard WES (no-plexing), 1.8-2.1 times cheaper than high-depth WGS, reach similar recall and precision rates in detecting coding variants as WES, and capture more population-specific variants in the rest of the genome that are difficult to recover when using genotype imputation methods. We apply WEGS to 862 patients with peripheral artery disease and show that it directly assesses more known disease-associated variants than a typical genotyping array and thousands of non-imputable variants per disease-associated locus.

2.
Nat Commun ; 14(1): 7420, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973875

RESUMO

Responses of cells to stimuli are increasingly discovered to involve the binding of sequence-specific transcription factors outside of known target genes. We wanted to determine to what extent the genome-wide binding and function of a transcription factor are shaped by the cell type versus the stimulus. To do so, we induced the Heat Shock Response pathway in two different cancer cell lines with two different stimuli and related the binding of its master regulator HSF1 to nascent RNA and chromatin accessibility. Here, we show that HSF1 binding patterns retain their identity between basal conditions and under different magnitudes of activation, so that common HSF1 binding is globally associated with distinct transcription outcomes. HSF1-induced increase in DNA accessibility was modest in scale, but occurred predominantly at remote genomic sites. Apart from regulating transcription at existing elements including promoters and enhancers, HSF1 binding amplified during responses to stimuli may engage inactive chromatin.


Assuntos
Proteínas de Ligação a DNA , Neoplasias , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Cromatina/genética , Neoplasias/genética
3.
Virus Res ; 327: 199060, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36746339

RESUMO

Viral infection, particularly respiratory syncytial virus (RSV), causes inflammation in the bronchiolar airways (bronchial wall thickening, also known as bronchiolitis). This bronchial wall thickening is a common pathophysiological feature in RSV infection, but it causes more fatalities in infants than in children and adults. However, the molecular mechanism of RSV-induced bronchial wall thickening remains unknown, particularly in healthy adults. Using highly differentiated pseudostratified airway epithelium generated from primary human bronchial epithelial cells, we revealed RSV-infects primarily ciliated cells. The infected ciliated cells expanded substantially without compromising epithelial membrane integrity and ciliary functions and contributed to the increased height of the airway epithelium. Furthermore, we identified multiple factors, e.g., cytoskeletal (ARP2/3-complex-driven actin polymerization), immunological (IP10/CXCL10), and viral (NS2), contributing to RSV-induced uneven epithelium height increase in vitro. Thus, RSV-infected expanded cells contribute to a noncanonical inflammatory phenotype, which contributes to bronchial wall thickening in the airway, and is termed cytoskeletal inflammation.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Lactente , Adulto , Humanos , Vírus Sincicial Respiratório Humano/fisiologia , Células Epiteliais , Epitélio , Inflamação
4.
BMC Genomics ; 20(1): 477, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185909

RESUMO

BACKGROUND: Global RNA sequencing technologies have revealed widespread RNA polymerase II (Pol II) transcription outside of gene promoters. Small 5'-capped RNA sequencing (Start-seq) originally developed for the detection of promoter-proximal Pol II pausing has helped improve annotation of Transcription Start Sites (TSSs) of genes as well as identification of non-genic regulatory elements. However, apart from the most well studied genomes of human and mouse, mammalian transcription has not been profiled with sufficiently high precision. RESULTS: We prepared and sequenced Start-seq libraries from rat (Rattus norgevicus) primary neural progenitor cells. Over 48 million uniquely mappable reads from two independent biological replicates allowed us to define the TSSs of 7365 known genes in the rn6 genome, reannotating 2503 TSSs by more than 5 base pairs, characterize promoter-associated antisense transcription, and profile Pol II pausing. By combining TSS data with polyA-selected RNA sequencing, we also identified thousands of potential new genes producing stable RNA as well as non-genic transcripts representing possible regulatory elements. CONCLUSIONS: Our study has produced the first Start-seq dataset for the rat. Apart from profiling transcription initiation, our data reaffirm the prevalence of Pol II pausing across the rat genome and indicate conservation of pausing mechanisms across metazoan genomes. We suggest that pausing location, at least in mammals, is constrained by a distance from initiation of transcription, whether it occurs at or outside of a gene promoter. Abundant antisense transcription initiation around protein coding genes indicates that Pol II recruited to the vicinity of a promoter is distributed to available start sites of transcription at either DNA strand. Transcriptome profiling of neural progenitors presented here will facilitate further studies of other rat cell types as well as other organisms.


Assuntos
Genômica , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Animais , Feminino , Gravidez , RNA Antissenso/genética , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
5.
Oncotarget ; 9(50): 29468-29483, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30034631

RESUMO

Calcium influx into cells via plasma membrane protein channels is tightly regulated to maintain cellular homeostasis. Calcium channel proteins in the plasma membrane and endoplasmic reticulum have been linked to cancer, specifically during the epithelial-mesenchymal transition (EMT), a cell state transition process implicated in both cancer cell migration and drug resistance. The transcription factor SNAI1 (SNAIL) is upregulated during EMT and is responsible for gene expression changes associated with EMT, but the calcium channels required for Snai1 expression remain unknown. In this study, we show that blocking store-operated calcium entry (SOCE) with 2-aminoethoxydiphenylborane (2APB) reduces cell migration but, paradoxically, increases the level of TGF-ß dependent Snai1 gene activation. We determined that this increased Snai1 transcription involves signaling through the AKT pathway and subsequent binding of NF-κB (p65) at the Snai1 promoter in response to TGF-ß. We also demonstrated that the calcium channel protein ORAI3 and the stromal interaction molecule 1 (STIM1) are required for TGF-ß dependent Snai1 transcription. These results suggest that calcium channels differentially regulate cell migration and Snai1 transcription, indicating that each of these steps could be targeted to ensure complete blockade of cancer progression.

6.
Virology ; 503: 62-69, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28126638

RESUMO

The location of nucleosomes in SV40 virions and minichromosomes isolated during infection were determined by next generation sequencing (NGS). The patterns of reads within the regulatory region of chromatin from wild-type virions indicated that micrococcal nuclease-resistant nucleosomes were specifically positioned at nt 5223 and nt 363, while in minichromosomes isolated 48 h post-infection we observed nuclease-resistant nucleosomes at nt 5119 and nt 212. The nucleosomes at nt 5223 and nt 363 in virion chromatin would be expected to repress early and late transcription, respectively. In virions from the mutant cs1085, which does not repress early transcription, we found that these two nucleosomes were significantly reduced compared to wild-type virions confirming a repressive role for them. In chromatin from cells infected for only 30min with wild-type virus, we observed a significant reduction in the nucleosomes at nt 5223 and nt 363 indicating that the potential repression by these nucleosomes appeared to be relieved very early in infection.


Assuntos
Cromatina/genética , Regulação Viral da Expressão Gênica/genética , Nucleossomos/genética , Vírus 40 dos Símios/genética , Transcrição Gênica/genética , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas , Análise de Sequência de DNA
7.
PLoS One ; 12(1): e0170961, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135303

RESUMO

Lyme disease is caused by infection with the bacterium Borrelia burgdorferi (Bb), which is transmitted to humans by deer ticks. The infection manifests usually as a rash and minor systemic symptoms; however, the bacteria can spread to other tissues, causing joint pain, carditis, and neurological symptoms. Lyme neuroborreliosis presents itself in several ways, such as Bell's palsy, meningitis, and encephalitis. The molecular basis for neuroborreliosis is poorly understood. Analysis of the changes in the expression levels of messenger RNAs and non-coding RNAs, including microRNAs, following Bb infection could therefore provide vital information on the pathogenesis and clinical symptoms of neuroborreliosis. To this end, we used cultured primary human astrocytes, key responders to CNS infection and important components of the blood-brain barrier, as a model system to study RNA and microRNA changes in the CNS caused by Bb. Using whole transcriptome RNA-seq, we found significant changes in 38 microRNAs and 275 mRNAs at 24 and 48 hours following Bb infection. Several of the RNA changes affect pathways involved in immune response, development, chromatin assembly (including histones) and cell adhesion. Further, several of the microRNA predicted target mRNAs were also differentially regulated. Overall, our results indicate that exposure to Bb causes significant changes to the transcriptome and microRNA profile of astrocytes, which has implications in the pathogenesis, and hence potential treatment strategies to combat this disease.


Assuntos
Astrócitos/metabolismo , Astrócitos/microbiologia , Borrelia burgdorferi/fisiologia , Perfilação da Expressão Gênica/métodos , Doença de Lyme/genética , Doença de Lyme/microbiologia , MicroRNAs/genética , Humanos , Imunidade/genética , Inflamação/genética , Inflamação/patologia , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcriptoma/genética
8.
J Med Chem ; 58(14): 5609-19, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26153715

RESUMO

Three photoaffinity ligands (PALs) for the human serotonin transporter (hSERT) were synthesized based on the selective serotonin reuptake inhibitor (SSRI), (S)-citalopram (1). The classic 4-azido-3-iodo-phenyl group was appended to either the C-1 or C-5 position of the parent molecule, with variable-length linkers, to generate ligands 15, 22, and 26. These ligands retained high to moderate affinity binding (K(i) = 24-227 nM) for hSERT, as assessed by [(3)H]5-HT transport inhibition. When tested against Ser438Thr hSERT, all three PALs showed dramatic rightward shifts in inhibitory potency, with Ki values ranging from 3.8 to 9.9 µM, consistent with the role of Ser438 as a key residue for high-affinity binding of many SSRIs, including (S)-citalopram. Photoactivation studies demonstrated irreversible adduction to hSERT by all ligands, but the reduced (S)-citalopram inhibition of labeling by [(125)I]15 compared to that by [(125)I]22 and [(125)I]26 suggests differences in binding mode(s). These radioligands will be useful for characterizing the drug-protein binding interactions for (S)-citalopram at hSERT.


Assuntos
Citalopram/metabolismo , Desenho de Fármacos , Processos Fotoquímicos , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Azidas/química , Citalopram/síntese química , Citalopram/química , Células HEK293 , Humanos , Ligantes , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/química
9.
Am J Bot ; 102(4): 555-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25878089

RESUMO

PREMISE OF THE STUDY: Over 50% of bryophytes have separate sexes, and numerous transitions have occurred between combined and separate sexes. Polyploidy and hybridization is one proximate mechanism hypothesized to cause evolutionary transitions to hermaphroditism in bryophytes because sex is expressed at the haploid stage and in nonpolyploid dioecious species males have a single V chromosome and females a U. Hermaphroditism can arise if gametophytes of allopolyploids have both U and V chromosomes. We examined the association between polyploidy and hermaphroditism in the bryophyte genus Atrichum, which has species where gametophytes can be haploid, diploid, or triploid, and some species have hermaphroditic individuals. METHODS: We generated phylogenies of Atrichum from sequences of three plastid regions (rbcL, rps4, and trnL-trnF) and the second intron for the nuclear gene Leafy/Floricaula to further understand the relationships among haploid, diploid, and triploid species, and those with combined or separate sexes. KEY RESULTS: The existence of multiple sequences of Leafy/Floricaula in diploid and triploid, but not haploid, individuals is consistent with independent allopolyploid origins of the diploid and triploid species. Allopolyploidy was associated with a likely gain in hermaphroditism in triploid Atrichum undulatum and possibly diploid A. altecristatum, but not in the allopolyploid A. crispulum (diploid at the gametophyte level). CONCLUSIONS: These results highlight a role for hybridization and polyploidy in sexual system evolution, but the presence of diploid (allopolyploid) dioecious species suggest that other factors may influence the maintenance of sexual systems after an evolutionary transition.


Assuntos
Evolução Biológica , Briófitas/fisiologia , Hibridização Genética , Briófitas/genética , Briófitas/crescimento & desenvolvimento , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução , Análise de Sequência de DNA
10.
Neurochem Int ; 73: 98-106, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24161619

RESUMO

The serotonin (5-HT) transporter (SERT) is an integral membrane protein that functions to reuptake 5-HT released into the synapse following neurotransmission. This role serves an important regulatory mechanism in neuronal homeostasis. Previous studies have demonstrated that several clinically important antimalarial compounds inhibit serotonin (5-hydroxytryptamine, 5-HT) reuptake. In this study, we examined the details of antimalarial inhibition of 5-HT transport in both Drosophila (dSERT) and human SERT (hSERT) using electrophysiologic, biochemical and computational approaches. We found that the cinchona alkaloids quinidine and cinchonine, which have identical stereochemistry about carbons 8 and 9, exhibited the greatest inhibition of dSERT and hSERT transporter function whereas quinine and cinchonidine, enantiomers of quinidine and cinchonine, respectively, were weaker inhibitors of dSERT and hSERT. Furthermore, SERT mutations known to decrease the binding affinity of many antidepressants affected the cinchona alkaloids in a stereo-specific manner where the similar inhibitory profiles for quinine and cinchonidine (8S,9R) were distinct from quinidine and cinchonine (8R,9S). Small molecule docking studies with hSERT homology models predict that quinine and cinchonidine bind to the central 5-HT binding site (S1) whereas quinidine and cinchonine bind to the S2 site. Taken together, the data presented here support binding of cinchona alkaloids to two different sites on SERT defined by their stereochemistry which implies separate modes of transporter inhibition. Notably, the most potent antimalarial inhibitors of SERT appear to preferentially bind to the S2 site. Our findings provide important insight related to how this class of drugs can modulate the serotonergic system as well as identify compounds that may discriminate between the S1 and S2 binding sites and serve as lead compounds for novel SERT inhibitors.


Assuntos
Antimaláricos/farmacologia , Antagonistas da Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Animais , Alcaloides de Cinchona/farmacologia , Células HeLa , Humanos , Oócitos/metabolismo , Técnicas de Patch-Clamp , RNA Complementar/biossíntese , RNA Complementar/genética , Estereoisomerismo , Relação Estrutura-Atividade , Xenopus laevis
11.
Ann Bot ; 107(1): 135-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21059613

RESUMO

BACKGROUND AND AIMS: Evolutionary transitions between separate and combined sexes have frequently occurred across various plant lineages. In mosses, which are haploid-dominant, evolutionary transitions from separate to combined sexes are often associated with genome doubling. Polyploidy and hermaphroditism have strong effects on the inbreeding depression of a population, and are subsequently predicted to affect the mating system. METHODS: We tested the association between ploidy (haploid, diploid or triploid gametophytes) and mating system in 21 populations of Atrichum undulatum sensu lato, where sex ratios vary widely. For each population, we measured the sex ratio, estimated selfing rates using allozyme markers and determined the level of ploidy through flow cytometry. KEY RESULTS: Hermaphrodites in A. undulatum were either diploid or triploid. However, many diploid populations were strictly separate-sexed, suggesting that hermaphroditism is not a necessary result of genome doubling. Levels of selfing were strongly supported as being greater than zero in one population with strictly separate-sexed individuals, and one-third of populations with hermaphrodites. CONCLUSIONS: Although hermaphrodites are associated with triploidy, hermaphroditism is not a necessary outcome of genome duplication. Hermaphroditism, but not genome duplication alone, increased estimated selfing rates, probably due to the occurrence of selfing within a gametophyte. Thus, genome duplication can influence the mating system and the associated evolution and maintenance of reproductive traits.


Assuntos
Briófitas/genética , Genoma de Planta , Reprodução Assexuada , Evolução Biológica , Briófitas/fisiologia , Diploide , Citometria de Fluxo , Variação Genética , Haploidia , Endogamia , Novo Brunswick , Reprodução , Razão de Masculinidade , Triploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...